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The First Exit Time Theory Applied to Life Table
Data: The Health State Function of a Population

and Other Characteristics
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Technical University of Crete, Chania, Crete, Greece
2Department of Mathematics and Computer Science, Hanover College,
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In this article, we summarize the main parts of the first exit time theory developed
in connection to the life table data and the resulting theoretical and applied issues.
New tools arise from the development of this theory and especially the Health State
Function and some important characteristics of this function.

We provide both simple and complex models and propose a methodology for
reconstructing the health state function from the provided first exit time density
distribution (for the appropriate computer program, see http://www.cmsim.net). In
the simpler case, this theory is applied for the reconstruction of the so-called
Inverse-Gaussian function.

Keywords Demographic analysis; First exit time probability density function;
Health State Function; Hitting time model; Inverse Gaussian; Life Table Data;
Stochastic modeling.

Mathematics Subject Classification 60H10; 62N05; 91D20; 97K06.

1. Introduction

1.1. Extracting Information from Population-Mortality Data

Over the centuries the systematic gathering of information for births-deaths from
many countries and the related Census Bureaus or Statistical Agencies gave rise
to theoretical and applied studies, both qualitative and quantitative in the areas
of demography, probability and statistics, applied mathematics, and more recently,
computer simulations.

Their main task was to extract as much information as possible from the
existing data sets but also to propose and develop a framework for more effective
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1586 Skiadas and Skiadas

gathering, storage and dissemination of population and mortality data. To this end,
nowadays we have quite reliable data sets based on the theoretical background
developed in the last centuries. Providing reliable data, systematically developed, is
the basis of good qualitative and quantitative studies. For birth-death data related
to a country the data sets are typically quite large, assuming that these data include
in a statistically reliable way the main part of the information for the status of the
population of the specific country over time and age group. These types of data sets
include and describe quantitatively the course of the health state of the population
including the births and deaths. At first glance, the data are simply sets for births
and deaths. However, as these data systematically provide complete information for
the status of the population by age group or by year of age, it is not so difficult
to develop mathematical-statistical techniques to provide information for the health
state or for the mortality of the population. From the beginning of the theoretical
approaches, back to Graunt (1662), Halley (1693), and others four centuries ago,
the task was to develop a theoretical framework under the title “Life Tables” facing
mortality from the optimistic point of view. The level for the health state of the
population emerged indirectly by estimating life expectancies and the life expectancy
at birth. Halley recommended the use of a term related to the level of the health
state called “vitality” to describe the gradual deterioration of the human health in
the course of time. However, the main term that became accepted and used was the
“force of mortality” per age. It was not evident how it would be possible to propose
and estimate a similar term for the state of the human health or for the vitality of an
organism. It is surprising because it is the health state that is the direct dominating
effect during the life time, and not the inverse, the force of mortality.

The health state or the vitality of an organism can be estimated from the birth-
death data sets. But how? Qualitatively it is a common sense that a good health
state of a population will result in higher life expectancy. Quantitatively the answer
should be included into the birth-death data and mainly into the death data sets per
age or per year of age.

But how can one quantify and model the health state of a population by
providing a health state function per age? The cause of the lack of developing a
quantitative theory is mainly due to the fact that the health state of an individual is
a stochastic process and the death is the end of this process when the health state
drops below a limit, called a “barrier” in terms of the first exit time or hitting time
stochastic theory. The theory of stochastic processes was developed only in the last
century and a well-established theory for the first exit time processes was proposed
only during the last decades. By contrast, the force of mortality was based on simple
probabilistic arguments developed over the last four centuries.

Another point is that a well-established and developed theory for the force
of mortality originated from Gompertz (1825) and the related theory based on
his article is widely known and used in demography and actuarial studies and
applications. Why should one then use a new term and a new theory based on the
health state of a population and the related function? To be viable and have a wide
spread and applicability, a new theory on the health state of a population needs to
fulfill the following:

1. to be based on a sound theoretical background;
2. to include the previous theoretical achievements and especially the functions

proposed for the force of mortality and the models proposed;
3. to include functions and methods improving the life expectancy estimates;
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Health State Function of a Population 1587

4. to provide new tools and especially tools related to the estimation of the health
state of a population. These tools should include estimates for the “age of the
maximum health state” and the “level” of this health state; and

5. to be supplemented with the necessary software for immediate application and
testing.

For several years we have worked on exploring the health state process and
providing the material in order to give a quite strong scientific tool useful to
theoreticians and practitioners.

In this article, we present the main parts of the theory followed by direct
applications to data sets.

While the literature regarding our method for the health state function is
missing thus making it impossible to make comparisons with other health state
functions proposed we have succeeded to propose a method to construct the health
state of a population only from data, thus avoiding the calculation of the parameters
of a model by fitting model to data. This is important for demographers, actuaries,
and policy makers to calculate the health state of a particular population, to
explore for changes over time and compare the health status between countries and
geographic regions. A good fitting model as those we have proposed may provide
additional information while it is useful for “smoothing” the data in cases with
systematic fluctuations.

The next step is the use of the new methods and techniques to estimate
characteristic parameters of a population system related to the healthy life years and
the healthy life expectancy or to explore future trends of health and mortality.

The forecasting ability of the proposed health state function should be tested
further in future studies with the results provided by other methods and especially
with the modeling technique proposed by Lee and Carter (1992) and further
developed and applied by Brouhns et al. (2002) and Haberman and Renshaw (2008).
Further applications can be done in the directions given in Pitacco et al. (2009) and
Pitacco and Olivieri (2009), focusing on actuarial and social and economic health
systems.

1.2. Theoretical Background

It is expected that a probability density function expressing the death process could
arise by using the stochastic theory related to the first exit time, via estimating
the probability density function concerning the first time for a stochastic process
to cross a barrier. The related theory originates from the pioneering work of
Schrödinger and Smoluchowsky in 1915. For the case of the death density function
the theoretical attempts where based on “vitality” a term originated from Halley
(1693), Gompertz (1825), and few decades ago, Strehler and Mildvan (1960). Death
arises as a cause of the loss of vitality or health which can be considered as a
stochastic process. Such a process can be modeled by a simple stochastic differential
equation of the form

dSt = �∗
t dt + �tdWt� (1)

where St is the health state or the vitality of the individual, �∗
t is a function of the

age t, and �t is the diffusion coefficient. In order to avoid confusion with the force of
mortality denoted by � in the actuarial science, we have set the �∗ for the different
function expressing the loss of vitality or the rate of decrease of the health state.
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1588 Skiadas and Skiadas

If we assume that �∗
t and �t are real functions the solution of (1) is immediate

by integration:

St =
∫ t

0
�∗
s ds +

∫ t

0
�sdWs� (2)

We set
�∗
t = dHt/dt� (3)

where Ht is the health state function.
The main problem here is not to find the solution of (1) but the transition

probability density function p�t�. From (1) we can pass to the associated Fokker-
Planck partial differential equation:

�p�St� t�

�t
= −�∗

t

�p�St� t�

�St
+ �2

t

2
�2p�St� t�

�S2
t

� (4)

The solution is given in Janssen and Skiadas (1995) and is of the form

p�t� = 1[
2�
∫ t

0 �
2
s ds
]1/2 e− �Ht �

2

2
∫ t
0 �2s ds � (5)

which, for constant �, takes the form

p�t� = 1

�
√
2�t

e
− �Ht �

2

2�2 t � (6)

2. The First Exit Time Density Function

The method for finding a density function expressing the distribution of the first
exit time of particles escaping from a boundary was developed by Schrödinger
(1915) and Smoluchowsky (1915) in two papers published independently in the
same journal issue. Later on, Siegert (1951) gave an interpretation closer to our
modern notation whereas Jennen (1985), Lerche (1986), and Jennen and Lerche
(1981) gave the most interesting first exit time density function form. For the simple
case presented earlier in (6), the proposed form is:

g�t� = �a�
t
p�a� t� = �a�

�
√
2�t3

e
− a2

2�2 t � (7)

where a is the distance from the barrier.
Jennen (1985) proposed a more general form for the case of curved boundary

using a tangent approximation of the first exit time density. More recent works can
be found in Wang and Pötzelberger (1997), Peskir (2002), and Zucca and Sacerdote
(2009). The simplest approach in modeling mortality leads to the following form
(earlier work can be found in Janssen and Skiadas, 1995; Skiadas, 2011a, b; Skiadas
and Skiadas, 2007, 2010a, b; 2011a, b):

g�t� = �Ht − tH ′
t �

t
p�t� = �Ht − tH ′

t �
�
√
2� t3

e
− �Ht �

2

2�2 t � (8)

where H ′
t is the derivative of Ht.
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Health State Function of a Population 1589

As we can see from the last form, the term �Ht − tH ′
t � accounts for the following

formula arising from a Taylor series expansion

Ht − tH ′ = H0 +
t2

2
H ′′ + ��� (8a)

For the case of a smooth slowly varying health state function Ht the error is of
the order of H ′′. For fitting the simpler approximation form arises with a cost of
estimating the correct Ht:

g�t� = k

t
p�t� = k

�
√
2� t3

e
− �Ht �

2

2�2 t � (9)

The equation form (9) is simpler than Eq. (8) and very easy to fit to data sets
considering that many non-linear parameters have to be estimated. From this point
of view (9) gave almost perfect fitting in many applications.

We arrived at the simpler form (9), very important for the proposed theory in
order to be able to have a closed form solution for the health state function Ht by
rearranging (9), with a cost of an error of estimating Ht. This error was observed
as to be small when we had performed some thousand of stochastic simulations in
Janssen and Skiadas (1995).

However, we can estimate the approximation term by introducing a function ft
in (9) as follows

g�t� = k

t
p�t� = k

�
√
2� t3

e
− �Ht−ft �

2

2�2 t (9a)

Then one task is to find the function ft so that (9a) to be a good approximation
of (8). In several cases it is better to find ft by other methods as are the simulation
techniques instead of approximations, because (8) is also an approximation and
perhaps is not good enough for a large interval of t. Fortunately, a simple function
for ft of the form

ft = at	 (9b)

is convenient for the cases related to the health state function of a population, and
mortality and population data used in our applications, as we will demonstrate in
the simulations section. The other problem on how to find the parameter k is given
in Sec. 3.

By estimating the parameters of Ht when fitting a good model to data we
observed that the fitting error was almost negligible for data of countries like the
U.S. where good methods of collecting data are used along with the large number of
population and deaths, thus providing a very smooth distribution for g�t�. It comes
out that the term �Ht − tH ′

t � which was replaced by the constant k if not a constant
should be included into the only time varying function Ht as a part of this function
(� is also considered as constant in all the applications). The second step is to solve
the inverse problem to find the error term or better the correction function by a
stochastic simulation method. A complete presentation should be given in a specific
paper. In the simulations section we give few examples and applications.

What remains is to find the form of the health state function Ht expressing the
loss of vitality process utilizing that it must be a declining function at the end of the
life course. A simple such form is expressed by (Skiadas and Skiadas 2010a, 2010b):

Ht = l− �bt�c� (10)
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1590 Skiadas and Skiadas

Figure 1. Simple health state models.

where l� b and c are parameters. When c = 1, the resulting probability density
function is the so-called Inverse Gaussian

g�t� = k

�
√
2� t3

e
− �l−bt�2

2�2 t � (11)

The effect of the health state decline modeling is illustrated in Fig. 1. The
linear approach (c = 1) is possible only for a very simple system or organism.
The death process is expressed by a gradual deterioration of the system without
repairing mechanisms. As the organism or the system becomes more complicated
and repair mechanisms are present, the parameter c is becomes larger, thus modeling
an organism which remains in a good condition for a large period of the life span.
These cases are expressed by c = 4 and c = 8. The fast decreasing period is due to
the code governing the health state. The case with c = 0�5 accounts for a system not
well operating. Figure 2 illustrates the first exit time densities for the cases of Fig. 1.

Figure 2. First exit time densities for models (9) and (10) for k = 10, l = 1, b = 0�012, and
� = 0�05.
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Health State Function of a Population 1591

3. A Special Property of the Health State Function H�t�

As we already introduced the health state as the opposite of mortality and the health
state function, as the opposite of mortality function, we should find a simple but
quite effective method to estimate H�t� from Life Tables or from Mortality Data.
From the first introduction of life tables it was evident that the optimistic term “life”
was preferred than the pessimistic “mortality”. Gompertz (1825) suggested the use of
“life contingencies” in his seminal paper "On the Nature of the Function Expressive
of the Law of Human Mortality, and on a New Mode of Determining the Value of
Life Contingencies”. Halley (1693) estimated mortality in his paper, “An Estimate
of the Degrees of the Mortality of Mankind, drawn from curious Tables of the
Births and Funerals at the City of Breslaw; with an Attempt to ascertain the Price
of Annuities upon Lives”. The terms Life Table and Life Table Data are more
frequently used especially from actuaries as such terms emphasize the optimistic
view of the life course.

As the death data from a country include, on average, a large part of the
information related to the health state of the population, it is surprising that no-
quantitative works are present related to the health state of the population during
the last centuries. We understand that the health state data are included into the
mortality data and the main task is to find a method to extract this information
from the mortality data or from the life table data. It is clear that both population
data and mortality data should contribute as is already the case when constructing
life tables.

The theory of the proposed health state function is relatively new. Special
features are expected to arise by continuing study and research. More work is
needed especially on finding the form of the unknown function H�t� and the
properties of this function. The simpler idea in exploring the form of H�t� is to
reconstruct it from the existing data sets of a population. The data usually refer
to a country. To reconstruct H�t� we need to reformulate the probability density
function g�t� expressed by Eq. (9) in terms of H�t�. Then, as the data for g�t� are
obtained from the bureau of the census or official databases it will be possible to
estimate H�t�. Turning back to the general equation proposed in Eq. (9), we see that
by estimating the parameters of a model with any health state function H�t� the
diffusion coefficient � cannot be estimated explicitly and it will be an internal part
of these parameters. So that we transform Eq. (9) in the following form:

g�t� =
(
k∗/��

√
2��

)
√

t3
e−

�H∗
t /��

2

2t � (12)

By setting
k = k∗/

(
�
√
2�
)
� (13)

and
Ht = H∗

t /�� (14)

we arrive to the following simpler form which is more convenient for the
applications

g�t� = k√
t3
e−

�Ht �
2

2t � (15)
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1592 Skiadas and Skiadas

We now turn our attention to producing an estimate of the form of the unknown
health state function H�t� by rearranging the previous equation and expressing H�t�
as a function of g�t�. The resulting function is of the form

H=
t ±

∣∣∣∣∣∣
(
−2t ln

g�t�
√
t3

k

)1/2
∣∣∣∣∣∣ � (16)

To assure a positive sign in the between brackets term on the right-hand side of the
last formula the following relation must hold:

k ≥ g�t�
√
t3� (17)

Thus, we can immediately have an illustration of the form of the function H�t�
by introducing the values for the deaths g�t� per age t from any annual data sets
from the human mortality databases in the above formula after estimating the
parameter k.

Application to the mortality data of U.S. for 2000, provided by the Human
Mortality Database, gave k = 31�10 at 88 years of age for females (Fig. 3) and k =
25�49 at 83 years of age for males (Fig. 4).

The very interesting finding is that along with the characteristic value of k�T�
we have an estimate for the age of the maximum death rate T from the relation:

k�t� = g�t�
√
t3� (18)

The estimation of the parameter k is an easy task if we observe that the function
H�t� should be continuous as is the function g�t�, it should decrease continuously
in the older ages and it should be zero (or very close to zero) at the age of the
maximum death rate. As illustrated in Fig. 3, there is only one curve fulfilling the
previous arguments when k = 31�10 (U.S. 2000, females) whereas the cases with
k < 31�10 violate continuity (see the curves for k = 5) and the cases with k > 31�10
show a gradual increase in the old ages (see the curves for k = 60). In the same
figure we have indicated the form which the unknown function H�t� should have

Figure 3. The parameter k�t� for females in the U.S. (2000). Two cases not appropriate
with k = 5 and k = 60 and the correct k = 31�10 at 88 years of age are presented.
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Health State Function of a Population 1593

Figure 4. The parameter k�t� for males in the U.S. (2000). Two cases not appropriate with
k = 5 and k = 60 and the correct k = 25�49 at 83 years of age are presented.

(curve with small circles). Similar results are illustrated in the next Fig. 4 (U.S. 2000,
males).

The Health State Functions for males and females for the same time period
(2000) for the U.S. are illustrated in Fig. 5a. The H�t� for females has higher
values than for males and the same holds for the age of zero H�t�. In both cases,
the Maximum Health State is found to be between 30 and 45 years of age, a
quite reasonable finding. An important estimator is found by calculating the area
between the health state curve and the horizontal axis (see Fig. 5a). This estimator
accounts for the total health state (THS) of a population (Skiadas and Skiadas,
2013). Changes of this estimator provide important information for the health state
condition of a population especially when are compared with the life expectancy at
birth (LEB). The results of an application in Sweden, females (1751–2007) for LEB
vs. THS are illustrated in Fig. 5b. As it was expected the life expectancy at birth is
improved as the health state of the population is getting higher. However, the LEB
development is slower than the THS.

While the Health State Function can be reconstructed from data without using
a model we have tested a model proposed by Janssen and Skiadas (1995) of the
form (15) where the health state function Ht is

Ht = a1 + at4 − b
√
t + lt2 − ct3� (19)

This model is developed in order to include the infant mortality (a1, a, b, l and c
are parameters). The results from fitting the model to data (dotted curves in Figs. 3
and 4) follow quite well the estimates with the reconstruction method.

The proposed technique is very general and can be applied for simpler forms
of health state functions as given by Eq. (10). Two forms for c = 1 and c = 4
are illustrated in the following figures. In both cases, the data used for the graphs
in Figs. 1 and 2 are introduced. In the first case the Inverse Gaussian (c = 1) is
reconstructed. First we formulate the function k�t� presented in Fig. 6. This graph
provides the maximum value for k and the age year with zero health state H = 0.
The estimated value for the maximum is k = 79�79. This is the value for k which
provides the correct shape for the H�t� of the Inverse Gaussian. This is expressed
by the straight line in Fig. 7. All other values for k fail to give the correct form of
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1594 Skiadas and Skiadas

Figure 5. a. Health state function for males and females in the U.S.; b. Life expectancy at
birth versus total health state in Sweden.

Figure 6. Estimation of k�t� for the Inverse Gaussian.
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Health State Function of a Population 1595

Figure 7. Reconstruction of H�t� for the Inverse Gaussian (c = 1).

H�t�. Two cases with k = 70 and k = 90 are presented in the same Fig. 7. In the first
case with k = 70, H�t� splits in two non-connected curves whereas in the second case
k = 90 leads to a declining first and then increasing curve.

It must be noted that the estimated values for k and H�t� come from the
relations (16) and (17), respectively.

Figures 8 and 9 illustrate the results for the model proposed in Skiadas and
Skiadas 2010 for the special case with c = 4. Figure 8 provides the form of k�t� and
Fig. 9 shows the characteristic shape for the health state function H�t�. As in the
previous case the maximum is k = 79�79. Two special cases with k = 30 and k = 110
are rejected, as well as all other values for k except k = 79�79. The case with k = 30
violates continuity and the other case with k = 110 provides a growing part in the
end.

4. First Exit Time Stochastic Simulations

The main issue when doing stochastic simulations is that it is difficult or impossible
in some cases to solve the inverse problem that is first to find the probability density

Figure 8. Estimation of k�t� for the Skiadas model (10), (c = 4).

D
ow

nl
oa

de
d 

by
 [

C
hr

is
to

s 
Sk

ia
da

s]
 a

t 1
7:

45
 1

7 
M

ar
ch

 2
01

4 



1596 Skiadas and Skiadas

Figure 9. Reconstruction of H�t� for the Skiadas model (10), (c = 4).

function (Pdf) by fitting a particular model to data sets, find the drift without
estimating the diffusion coefficient or the infinitesimal variance �2, and second to
use the drift to construct the stochastic model and then to produce sufficiently
large number of stochastic paths crossing the barrier and producing the simulated
probability density function (Spdf). The selection of the diffusion coefficient (not
possible when fit a model to data) is done by making several selections as to
minimize the error between SPDF and the PDF for a large number of stochastic
simulations.

In this article, we use the facilities of the Excel program mainly because it is
easy to apply by a large number of researchers, students or any interested person.
The needed generators for stochastic simulations are included into the program
thus easily producing a Wiener-type process and then estimating the stochastic
realizations.

The first step is to check the hitting time simulation procedure by using a well-
known Pdf, the so-called Inverse Gaussian given by the formula

g�t� = k√
t3
e−

�Ht �
2

2t �

where Ht is provided in (10)
Ht = l− bt�

The stochastic paths are given by

St = Ht + �
∫ t

0
dWs� (20)

A number of 308,655 stochastic simulations (Fig. 10A) for the simple model with
l = 20, � = 1�2, and b = 0�6 gave sufficiently good results (Fig. 10B). The barrier is
set at zero. The Sum of Square Errors is negligible (1.23*10−11). The mean value Ht

is linear (see the straight line in Fig. 10A) as it was expected.
The next step is to apply the first exit time simulations method to the death and

population data of a country. Here we use the data for the U.S. provided by the
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Figure 10. A. Stochastic simulations. B. The Pdf (equation) and Spdf (simulation).

Figure 11. A. Stochastic simulations; B. The correction function ft.

Human Mortality Database (HMD) already explored earlier. The mean value Ht is
a smooth function presented by the heavy line in Fig. 11A where several stochastic
paths for � = 1�2 are illustrated. The health state function Ht is corrected according
to the formula (9b). The parameters are given in Table 1. The form of this correction
term is illustrated in Fig. 11B and the estimated and corrected values of Ht for the
U.S. in 2000 are presented in Fig. 12A. The estimated Ht is based on the form (16).
After 308,655 simulations the resulting Spdf is very close to the Pdf as it is illustrated
in Fig. 12B.

Table 1
Life Expectancy at Birth and Correction Parameters for USA Males

Country/Time Life Expectancy Correction Diffusion
Period at Birth Parameters Coefficient

USA Males Fit SIM HMD a 	 �

1935 58.61 58.89 58.96 0.0009054 2 1.25
1960 66.69 66.69 66.63 0.0006854 2 1.20
2000 74.31 74.59 74.19 0.0006754 2 1.20
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Figure 12. A. Estimated and corrected Ht; B. The Pdf (equation) and Spdf (simulation).

Table 1 summarizes the application results for males in the U.S. for the years
1935, 1960, and 2000. The Life Expectancy at Birth is estimated from the results
of the fit curve (9) and from the simulation (SIM) and are compared with the
estimates provided by the Human Mortality Database (HMD) indicating a very
good, almost perfect approximation between these methods. The Sum of Square
Errors is negligible, 3.25*10−6 for U.S. males for the year 1935 and also negligible
for the years 1960 and 2000.

Another point when using the simulation methodology is the estimation of � by
doing very many estimates. However, for males in the U.S., the values for � close to
1.2 are quite good selections thus simplifying and reducing the computation effort.

5. Conclusions

We have expanded and analyzed a general theory of health state of a population
and various estimates useful in statistics and actuarial science. The aim was towards
providing tools for measuring the health state of a population from life table data.
By using this theory and the provided tools and the Excel programs the estimates
and fitting curves are very easy. For information and downloads visit the website
http://www.cmsim.net. We are now able to reconstruct the health state function
from population and death data provided by the bureau of the census. The same
tools can be introduced in many other fields.
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