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Abstract. A modeling approach to Life Table Data sets is proposed. The method
is based on a stochastic methodology and the derived first exit time probability
density function. The Health State Function of a population is modeled as the
mean value of the health states of the individuals. The form for the health state
function suggested here is relatively simple compared to previous attempts but the
application results are quite promising. The model proposed is a three parameter
model and it is compared to the three parameter Weibull model. Both models
are applied to the Life Table Data for males and females in Greece from 1992 to
2000. The results indicate that the proposed model fits better to the data than the
Weibull model. The methodology for the model building and the model proposed
could be used in several cases in population studies in biology, ecology and in other
fields.
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1 Introduction

Many attempts were done during the last centuries to model Life Table Data
and the inevitable decay process of an original population during time. The
most important for this study are the models proposed by Gompertz to ex-
press the law of human mortality and the Weibull model as a model to express
the failure of items in a set of products. The later is also a flexible model
to express the distribution function of the number of deaths of a population.
The task of this study is to propose a simple three parameter model that
can be applied to life table data based on a stochastic theory presented in
previous studies. In these studies more complicated models where proposed
and applied. However, these models where quite heavy to handle and apply.
Furthermore, as these models have several parameters, it is not possible to
test their fitting ability relative to the simpler three parameter models in use,
like for instance the Gompertz the Weibull models.
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2 Model Analysis

The Gompertz model, proposed by Benjamin Gompertz (1825) and anal-
ysed by other researchers many years ago for the analysis needed in this
study (Winsor, 1932), has the form of the following density function:

g(t) = ke " exp (fbe*u)

The model is left skewed and it is not easy to apply to life table data
in all the data range. Instead it is a good model to express the mortality
data from an age close to 30 years up to a maximum level of the death
rate, usually between 70-80 years depending on the data set used (males or
females), (Haybittle, 1998).

The Weibull model was proposed by Waloddi Weibull (1951). The prob-
ability density function of this model has the form:

T\ k
k fx\k-1 — <*>
) = — (7) )

Usually this is considered as a 2-parameter model. However, when ap-
plying the model to data as is the case in this study an extra parameter is
present. Then the model takes the following 3-parameter form:

flx k) =c (%)’H ;(%)k

where the parameter ¢ will be determined when fitting the model to the data.

3 The Proposed Model

In previous studies a general model was proposed, based on the theory of
the hitting time of a stochastic process in a barrier located at a distance a
from the horizontal axis which expresses the age of the individual (Janssen
and Skiadas, 1995; Skiadas, 2006b,a). The stochastic variable expresses the
health state of the individual whereas the mean value of the process expresses
the health state of the population.

This model, for the case of the state of human health, has the following
probability density function (Skiadas, 2006b,a):

It 1y

where kx* is a normalisation constant defined by the formula:

/Ooog(t)dtl
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Where H(t) is the health state function and o is the variance.

Although the concept of the health and the health state are terms very
much defined and used in our societies from the very beginning, a mathemat-
ical analytic form is not obtained. It is a common knowledge that the health
state decrease over time, and also that frequent and sudden changes appear,
thus leading to the acceptance that the health state follows a stochastic path
during time.

Regarding the mean value of the health of a population denoted by H (t)
in equation (1), this must be expressed by a function of unknown form which
is decreasing at least for large values of the age t. The development and
application of the Gompertzian theory in the last two centuries indicated
that a rapidly decreasing function may express the state of human health in
the last years of the human life very well (Haybittle, 1998).

Instead, in the middle period of human life, the mean health state could
be expressed by a slowly decreasing function of time. There remain the first
years after birth, when the state of the human health is in relatively lower
levels.

The modeling of this early period, along with the remaining life time, was
done in previous studies by introducing a quite heavy model for the health
state function. The application of this model to life table data was successful.
However, it was not possible to compare it to simpler models, such as the
Gompertz and Weibull models, due to the larger number of parameters of the
proposed model. Also the proposed model was modeling the total life period
including the first stages of human life, something that is not possible by
applying the simpler models. Application of this model shows that the form
of the health state function for large ages is mainly flat and slowly decreasing.

Another very important point is that when we expand the unknown health
state function H(t) in a Taylor series, the rapidly decreasing part of the
function could be expressed simply by a term having a large exponent. This
means that a function of the following form could be a simple but quite good
approximation to the real situation:

H(t) = c— (t)°

where ¢, ¢ and b are positive parameters.

For b > 0 we see that H(t) is a decreasing function. Especially for b >> 1,
then H(t) is a rapidly decreasing function. Figure 1 illustrates this case for
various values of the parameter b (¢ = 20, £ = 0.03 and b = 3,4, 5).

Introducing the above value for H(t) in equation (1), the following form

results:
o — b)?
o) = K(tt)~ exp <(2<ft))> )

where ¢ = a* + ¢, k is the new integration constant and the variance o is
included in the parameters k, a and ¢£. Without loss of generality, in many
applications it could be assumed that o = 1.
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Fig. 1. Health state functions of the form H(t) = ¢ — (fz)°.

Figure 2 illustrates the above case for various values of the parameter b
(¢=20,¢=0.03 and b = 3,4,5). It is clear that the higher the value of the
parameter b, the faster the rate of decrease is, and the sharper the density
function becomes.
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Fig. 2. The density function for a health state function of the form H(t) = c— (fz)®.
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4 Applications to Life Table Data and Comparisons

Depending on whether the life table data we are looking at are for male or
female populations, a different value of b will be used (b = 4 for males and
b =5 for females is selected). The following table shows the results of fitting
the life table data for Greece from 1992 to 2000 to our model, using a non-
linear least squares fit, and comparing the fit with the corresponding fit from
the Weibull distribution.

For the purposes of the performing fit, the parameters are set in a slightly
different way. Here is the density function from the proposed model:

by 2
gtk 0,0, b) = K (¢8) ™% exp <(a_2(ft))>

And the corresponding equations for the Weibull model:

g(t;e, Bk) =¢ (tB)k*1 exp (—(tB)k)

Table 1 summarises the non-linear regression results for Greece (males)
from 1992 to 2000. The proposed monomial model shows better fitting be-
havior compared to the Weibull model for all the nine years studied. Table 2
shows the corresponding results for females.

Another interesting point is to find out at which time T the value of the
health state function H(¢) becomes zero. This is achieved when

all/b
T= L

For the case of males (b = 4) the estimated value is T' = 82.1707 in
1992 and T = 82.69 in the year 2000. There appears to be an increase of
t = 0.51929, or approximately half of a year, in a 9 years period.

For the case of females the estimated value is 7' = 85.37205 in 1992 and
T = 86.61715 in the year 2000. There appears to be an increase of t = 1.2451
in a 9 years period.

Using our estimates for the parameters of the model, we may construct
a graph to illustrate the health state function for males and females at a
specific year. The Figure 3 shows the health state function for males and
females at the year 2000. As expected from the above theory, in both cases
there appears to be a relatively stable period, represented by the flat part of
the curve for the years up to 40 for females and up to 30 for males. Then a
gradually decreasing period follows. The health state function shows higher
values for females compared to that for males.

Figures 4 and 5 illustrate the raw data for Greece 2000 for females and
males respectively, along with curves expressing the proposed model and the
Weibull model. In both cases the fitting is quite good. The relatively higher
sum of squared error for males is due to the sharp form of the data in the
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Proposed Model Fit

Weibull Fit

Year

k

4

«

SS

C

k

B

SS

1992

9.49813

0.02523

18.47361

3.95820

8.66475

7.41596

0.01236

5.26180

1993

9.51720

0.02523

18.47850

3.91172

8.68521

7.42218

0.01235

5.18750

1994

9.37214

0.02513

18.34295

4.00749

8.56078

7.30223

0.01234

5.13369

1995

9.35083

0.02508

18.33543

4.61074

8.54554

7.29311

0.01232

5.76867

1996

9.20313

0.02500

18.15040

3.74582

8.42971

7.15397

0.01232

4.62984

1997

9.25545

0.02503

18.19395

3.48055

8.47724

7.18893

0.01233

4.24332

1998

9.20220

0.02494

18.13499

3.75199

8.42760

7.11416

0.01230

4.28701

1999

9.26440

0.02500

18.20473

3.27281

8.47366

7.15850

0.01231

3.64226

2000

9.33965

0.02501

18.29502

3.72047

8.52884

7.20542

0.01230

3.95039

Table 1. Fit comparison for Greece, Males.

Proposed Model Fit

Weibull Fit

Year

k

L

(%

SS

C

k

B

SS

1992/10.50017

0.02149

20.76597

3.09603

11.42873

10.36549

0.01181(4.30740

1993(/10.54319

0.02148

20.82900

3.49145

11.46462

10.40470

0.01180(4.80948

1994(/10.64504

0.02145

21.02880

3.31293

11.55272

10.53462

0.01175(4.66292

1995(|10.54154

0.02139

20.88549

2.92138

11.44183

10.38639

0.01174]4.20394

1996(/10.48414

0.02135

20.82431

2.59704

11.38510

10.32809

0.01173|3.88427

1997{|110.40077

0.02127

20.73785

2.62815

11.30523

10.24637

0.01170|4.00420

1998(/10.42762

0.02123

20.80106

2.91107

11.32323

10.26573

0.01167(4.22223

1999(/10.33880

0.02118

20.66995

2.00799

11.23670

10.14668

0.01166{3.22056

20001|10.35440

0.02115

20.61470

1.88820

11.24338

10.05560

0.01165(2.76724

Table 2. Fit comparison for Greece, Females.
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Fig. 3. Estimated health state functions for males and females, Greece 2000.

range of the maximum death rate, as is illustrated in Figure 5. For males the
main part of the error term is due to fluctuations around the range of the
maximum death, as well as the deaths at ages 18-28 years, which are mostly
due to accidents and other reasons.

Actual Values o
< 4 —— Proposed Fit :
- Weibull

age

Fig. 4. Fit, Females, Greece, 2000
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Fig. 5. Fit, Males, Greece, 2000

A comparative view of the sum of square residuals (SSR) is illustrated
in the Figures 7 and 6, where the SSR of the proposed model are plotted
against the SSR of the Weibull model. The results show an almost stable
superiority of the proposed model for the case of females. In the males case
the proposed model shows lower SSR in all the tested time period. However,
the difference tends to shorten over time.

The results regarding the SSR. of the proposed model show that perhaps a
model with a varying parameter b could give better results. Also we can test
our assumption regarding the values of the parameter b selected for males
(b = 4) and females (b = 5). The parameter is close or higher to b = 5 for
females whereas for males there appear values larger or smaller than b = 4.
However this value is close to b = 4 for the years 1996 to 2000.

5 Conclusions

In this paper we proposed and applied a 3-parameter model to express the
distribution function of the number of deaths of a population. This model
was applied to the Greek life table data from 1992 to 2000. The proposed
model was tested and compared with the Weibull model. The comparative
results were quite promising, indicating a better fit for the proposed model
than the commonly used Weibull model.

The good application results of the proposed model strengthen the under-
lying theoretical assumptions of the stochastic theory used. The modeling
of life table data sets based on the hitting time theory and the resulting
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Fig. 6. Comparison of the sum of square residuals for the two models, Males.
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Fig. 7. Comparison of the sum of square residuals for the two models, Females.
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probability density function seems to be a quite promising new direction of
research.
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